182 research outputs found

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    Straightening out planar poly-line drawings

    Full text link
    We show that any yy-monotone poly-line drawing can be straightened out while maintaining yy-coordinates and height. The width may increase much, but we also show that on some graphs exponential width is required if we do not want to increase the height. Likewise yy-monotonicity is required: there are poly-line drawings (not yy-monotone) that cannot be straightened out while maintaining the height. We give some applications of our result.Comment: The main result turns out to be known (Pach & Toth, J. Graph Theory 2004, http://onlinelibrary.wiley.com/doi/10.1002/jgt.10168/pdf

    A Note on Plus-Contacts, Rectangular Duals, and Box-Orthogonal Drawings

    Full text link
    A plus-contact representation of a planar graph GG is called cc-balanced if for every plus shape +v+_v, the number of other plus shapes incident to each arm of +v+_v is at most cΞ”+O(1) c \Delta +O(1), where Ξ”\Delta is the maximum degree of GG. Although small values of cc have been achieved for a few subclasses of planar graphs (e.g., 22- and 33-trees), it is unknown whether cc-balanced representations with c<1c<1 exist for arbitrary planar graphs. In this paper we compute (1/2)(1/2)-balanced plus-contact representations for all planar graphs that admit a rectangular dual. Our result implies that any graph with a rectangular dual has a 1-bend box-orthogonal drawings such that for each vertex vv, the box representing vv is a square of side length deg(v)2+O(1)\frac{deg(v)}{2}+ O(1).Comment: A poster related to this research appeared at the 25th International Symposium on Graph Drawing & Network Visualization (GD 2017
    • …
    corecore